Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3-δ for solid oxide fuel cells

Identifieur interne : 000312 ( Chine/Analysis ); précédent : 000311; suivant : 000313

Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3-δ for solid oxide fuel cells

Auteurs : RBID : Pascal:13-0127561

Descripteurs français

English descriptors

Abstract

Barium zirconate-based high-temperature proton conductors (HTPCs) exhibit excellent chemical stability in atmospheres containing CO2 or water vapor. However, such HPTCs haven't been widely used as electrolyte materials for solid oxide fuel cells (SOFCs) due to their poor sintering activity. In this work, indium is selected as a dopant to improve the sintering activity of barium zirconate. BaZr0.8In0.2O3-δ (BZI) powders with a pure cubic perovskite structure are synthesized via a typical citric acid-nitrate gel combustion process. The SEM results show that BZI exhibits improved sintering activity compared to the state-of-the-art proton conductor BaZr0.8Y0.2O3-δ (BZY), and fully dense BZI pellets with increased grain size are obtained after sintered at 1600 °C in air. Moreover, BZI also keeps sufficiently high chemical stability as BZY. The electrical conductivity of BZI under various atmospheres is investigated by electrochemical impedance spectroscopy (EIS) in detail. The total conductivity achieves 1.0 x 10-3 S cm-1 at 700 °C in wet H2 (3% H2O). Dense BZI electrolyte films are successfully fabricated on the anode substrates by a dry-pressing method after sintered at 1400 °C for 5 h in air. Single cells with dense BZI electrolyte films are also assembled and tested to further evaluate the feasibility of BZI as an electrolyte material for proton-conducting SOFCs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0127561

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Chemically stable and easily sintered high-temperature proton conductor BaZr
<sub>0.8</sub>
In
<sub>0.2</sub>
O
<sub>3-δ</sub>
for solid oxide fuel cells</title>
<author>
<name>WENPING SUN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC)</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230026</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Atlanta, GA 30332</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHIWEN ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC)</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230026</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHEN SHI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC)</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230026</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC)</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230026</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hefei 230031</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0127561</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0127561 INIST</idno>
<idno type="RBID">Pascal:13-0127561</idno>
<idno type="wicri:Area/Main/Corpus">001074</idno>
<idno type="wicri:Area/Main/Repository">001056</idno>
<idno type="wicri:Area/Chine/Extraction">000312</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0378-7753</idno>
<title level="j" type="abbreviated">J. power sources</title>
<title level="j" type="main">Journal of power sources</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Barium</term>
<term>Carbon dioxide</term>
<term>Chemical stability</term>
<term>Combustion</term>
<term>Comparative study</term>
<term>Doped materials</term>
<term>Dry pressing</term>
<term>Electrical conductivity</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Electrolyte</term>
<term>Feasibility</term>
<term>Grain size analysis</term>
<term>High temperature</term>
<term>Indium</term>
<term>Ionic conductors</term>
<term>Perovskite type compound</term>
<term>Powder</term>
<term>Proton conductivity</term>
<term>Sintering</term>
<term>Solid oxide fuel cell</term>
<term>State of the art</term>
<term>Water vapor</term>
<term>Zirconates</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Frittage</term>
<term>Haute température</term>
<term>Pile combustible oxyde solide</term>
<term>Stabilité chimique</term>
<term>Vapeur eau</term>
<term>Electrolyte</term>
<term>Combustion</term>
<term>Etude comparative</term>
<term>Etat actuel</term>
<term>Granulométrie</term>
<term>Conductivité électrique</term>
<term>Spectrométrie impédance électrochimique</term>
<term>Anode</term>
<term>Pressage sec</term>
<term>Faisabilité</term>
<term>Conductivité protonique</term>
<term>Matériau dopé</term>
<term>Conducteur ionique</term>
<term>Baryum</term>
<term>Zirconate</term>
<term>Dioxyde de carbone</term>
<term>Indium</term>
<term>Poudre</term>
<term>Perovskites</term>
<term>CO2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Barium zirconate-based high-temperature proton conductors (HTPCs) exhibit excellent chemical stability in atmospheres containing CO
<sub>2</sub>
or water vapor. However, such HPTCs haven't been widely used as electrolyte materials for solid oxide fuel cells (SOFCs) due to their poor sintering activity. In this work, indium is selected as a dopant to improve the sintering activity of barium zirconate. BaZr
<sub>0.8</sub>
In
<sub>0.2</sub>
O
<sub>3-δ</sub>
(BZI) powders with a pure cubic perovskite structure are synthesized via a typical citric acid-nitrate gel combustion process. The SEM results show that BZI exhibits improved sintering activity compared to the state-of-the-art proton conductor BaZr
<sub>0.8</sub>
Y
<sub>0.2</sub>
O
<sub>3-δ</sub>
(BZY), and fully dense BZI pellets with increased grain size are obtained after sintered at 1600 °C in air. Moreover, BZI also keeps sufficiently high chemical stability as BZY. The electrical conductivity of BZI under various atmospheres is investigated by electrochemical impedance spectroscopy (EIS) in detail. The total conductivity achieves 1.0 x 10
<sup>-3</sup>
S cm
<sup>-1</sup>
at 700 °C in wet H
<sub>2 </sub>
(3% H
<sub>2</sub>
O). Dense BZI electrolyte films are successfully fabricated on the anode substrates by a dry-pressing method after sintered at 1400 °C for 5 h in air. Single cells with dense BZI electrolyte films are also assembled and tested to further evaluate the feasibility of BZI as an electrolyte material for proton-conducting SOFCs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0378-7753</s0>
</fA01>
<fA02 i1="01">
<s0>JPSODZ</s0>
</fA02>
<fA03 i2="1">
<s0>J. power sources</s0>
</fA03>
<fA05>
<s2>229</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Chemically stable and easily sintered high-temperature proton conductor BaZr
<sub>0.8</sub>
In
<sub>0.2</sub>
O
<sub>3-δ</sub>
for solid oxide fuel cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WENPING SUN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHIWEN ZHU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHEN SHI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WEI LIU</s1>
</fA11>
<fA14 i1="01">
<s1>CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC)</s1>
<s2>Hefei 230026</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences</s1>
<s2>Hefei 230031</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive</s1>
<s2>Atlanta, GA 30332</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>95-101</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17113</s2>
<s5>354000502446320150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0127561</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of power sources</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Barium zirconate-based high-temperature proton conductors (HTPCs) exhibit excellent chemical stability in atmospheres containing CO
<sub>2</sub>
or water vapor. However, such HPTCs haven't been widely used as electrolyte materials for solid oxide fuel cells (SOFCs) due to their poor sintering activity. In this work, indium is selected as a dopant to improve the sintering activity of barium zirconate. BaZr
<sub>0.8</sub>
In
<sub>0.2</sub>
O
<sub>3-δ</sub>
(BZI) powders with a pure cubic perovskite structure are synthesized via a typical citric acid-nitrate gel combustion process. The SEM results show that BZI exhibits improved sintering activity compared to the state-of-the-art proton conductor BaZr
<sub>0.8</sub>
Y
<sub>0.2</sub>
O
<sub>3-δ</sub>
(BZY), and fully dense BZI pellets with increased grain size are obtained after sintered at 1600 °C in air. Moreover, BZI also keeps sufficiently high chemical stability as BZY. The electrical conductivity of BZI under various atmospheres is investigated by electrochemical impedance spectroscopy (EIS) in detail. The total conductivity achieves 1.0 x 10
<sup>-3</sup>
S cm
<sup>-1</sup>
at 700 °C in wet H
<sub>2 </sub>
(3% H
<sub>2</sub>
O). Dense BZI electrolyte films are successfully fabricated on the anode substrates by a dry-pressing method after sintered at 1400 °C for 5 h in air. Single cells with dense BZI electrolyte films are also assembled and tested to further evaluate the feasibility of BZI as an electrolyte material for proton-conducting SOFCs.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06D03E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03E</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Frittage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Sintering</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sinterización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Pile combustible oxyde solide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solid oxide fuel cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Pila combustible oxido sólido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Stabilité chimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Chemical stability</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estabilidad química</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Vapeur eau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Water vapor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Vapor agua</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Electrolyte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electrolyte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Electrólito</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Combustion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Combustion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Combustión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Etat actuel</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>State of the art</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estado actual</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Granulométrie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Grain size analysis</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Granulometría</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Spectrométrie impédance électrochimique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electrochemical impedance spectroscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Anode</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Anode</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Pressage sec</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Dry pressing</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Prensado seco</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Faisabilité</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Feasibility</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Practicabilidad</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Conductivité protonique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Proton conductivity</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Conductividad protónica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Conducteur ionique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Ionic conductors</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Baryum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Barium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Bario</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Zirconate</s0>
<s2>NA</s2>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Zirconates</s0>
<s2>NA</s2>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Zirconato</s0>
<s2>NA</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Poudre</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Powder</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Polvo</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Perovskites</s0>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Perovskite type compound</s0>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Perovskitas</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>CO2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>105</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000312 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000312 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0127561
   |texte=   Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3-δ for solid oxide fuel cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024